New Zealand MEDSAFE approves ABRAXANE for metastatic breast cancer
April 10, 2016
Scientists had shown previously that DNA repair was much less efficient when FANCI and FANCD2 lack the single ubiquitin. DNA response and damage-repair proteins can be recruited to damage sites by the proteins' ubiquitin-binding domains. The team first identified a protein that had both a ubiquitin-binding domain and a known nuclease domain. When they treated cells with mitomycin C, which promotes DNA cross-linking, that protein, then known as KIAA1018, gathered at damage sites. This led them to the functional experiments that established its role in DNA repair.
They renamed the protein FAN1, short for Fanconi anemia-associated nuclease 1. The FANCI-FANCD2 complex is ubiquitinated by an FA core complex containing eight FA proteins. These genes and proteins were discovered during research of Fanconi anemia, a rare disease caused by mutations in 13 fanc genes that is characterized by congenital malformations, bone marrow failure, cancer and hypersensitivity to DNA cross-linking agents.
Chen said the FANCI-FANCD2 pathway also is associated with the BRCA1 and BRCA2 pathways, which are involved in homologous recombination repair. Scientists know that homologous recombination repair is also required for the repair of DNA cross-links, but the exact details remain to be resolved, Chen said. Mutations to BRCA1 and BRCA2 are known to raise a woman's risk for ovarian and breast cancers and are found in about 5-10 percent of women with either disease.
Source: University of Texas M. D. Anderson Cancer Center