Life Technologies, TGen, US Oncology collaborate to sequence genomes of triple negative breast cancer patients
November 24, 2015
"Metastatic triple negative breast cancer is an aggressive cancer for which few effective therapies exist," says Joyce O'Shaughnessy, M.D., Co-Chair of the US Oncology Breast Cancer Research Committee, Associate Director for US Oncology clinical research and Co-Director of the Breast Cancer Research Program at Baylor-Charles A. Sammons Cancer Center and Texas Oncology, a US Oncology affiliate in Dallas, Texas. "US Oncology has conducted a number of clinical trials aimed at advancing the biologic understanding and therapeutic efficacy for these patients, and we are very excited to have the opportunity to fully sequence patients' triple negative breast cancers towards these ends."
Additionally, scientists from TGen and Life Technologies will collaborate in the development of novel computational and informatics software paving the way for the use of whole genomic sequencing data for querying, identifying and interpreting mutations to provide for more effective therapeutic decisions. These capabilities will potentially have a significant impact on the treatment of cancer and other complex diseases for which numerous targeted therapeutic choices are available.
"Life Technologies' highly accurate SOLiD system is the appropriate tool to carry out this type of study," said Mark Stevenson, President and Chief Operating Officer for Life Technologies. "With an accuracy greater than 99.94 percent, we will be confident that any differences between the tumor DNA and DNA from healthy tissue will be the result of mutations as opposed to errors introduced in the sequencing itself. Life Technologies is proud to be part of such groundbreaking research, which is paving the way for a new paradigm in cancer treatment."
The SOLiD System is used globally in experiments to better understand the genetic nature of diseases such as cancer, diabetes, and neurological disorders. Its throughput, accuracy, speed and flexibility allow researchers to generate the high quality data needed for the advancement of molecular medicine.
Source: The Translational Genomics Research Institute