Fox Chase Cancer Center announces first-in-human bi-specific HER2/HER3 pathway targeting antibody
February 23, 2016
The general concept behind the new drug was first developed at Fox Chase in collaboration with researchers at the University of California, San Francisco. Both institutions joined to license the intellectual property for the bispecific antibody to Merrimack, which further refined the antibody and made it more suitable for use as a drug in humans.
The origin of the double-headed antibody has its roots in a conversation between Louis Weiner, M.D., then-chair of medical oncology at Fox Chase, and Greg Adams, Ph.D., an antibody engineer and Co-Leader of Fox Chase's Molecular and Translational Medicine Program. Weiner and Adams took the concept of an anti-ErbB2/ErbB3 bispecific antibody to their long-term collaborator James Marks, M.D., Ph.D., of the University of California, San Francisco. The Adams lab used recombinant DNA technology to engineer the ErbB2 and ErbB3 targets which the Marks lab then used to isolate the antibodies that the Adams lab used to engineer the prototype bispecific antibodies. The exquisite ability of these prototype bispecific antibodies to target and treat breast cancer cells was then determined in the laboratory by Matthew Robinson, Ph.D., a Fox Chase associate member.
After licensing the intellectual property, Merrimack scientists further refined the concept to create a new drug. Its antibody arms bind more tightly to their targets and its linker chain is derived from a human protein, which allows the drug to survive in the bloodstream longer. According to Merrimack, MM-111 is the first bispecific antibody binding two different receptors on the same cell to enter clinical development.
Source: Fox Chase Cancer Center